Tinjauan Literatur : Analisis Hubungan Kandungan Hemiselulosa dan Rendemen Furfural
Sari
Biomassa lignoselulosa merupakan limbah hasil pertanian, perkebunan yang mempunyai kandungan lignin, selulosa dan hemiselulosa. Biomassa lignoselulosa yang jumlahnya sangat melimpah dapat dimanfaatkan menjadi salah satu produk biokimia yaitu furfural karena memiliki kandungan hemiselulosa yang merupakan bahan yang dibutuhkan dalam pembuatan furfural. Furfural adalah pelarut yang dihasilkan dari hemiselulosa/pentosan tumbuhan (xylan,arabinan dan polyuronids). Furfural diperoleh dari hidrolisis bahan hemiselulosa menggunakan larutan asam. Furfural merupakan cairan tidak berwarna yang memiliki aroma khas yang berguna sebagai bahan perantara dalam industri. Proses komersial pertama untuk produksi furfural adalah dimulai oleh Quaker Oats pada tahun 1921. Saat ini, produksi furfural terkonsentrasi di China, lebih kurang 70% dari produksi furfural global. Kebutuhan (demand) furfural dan turunannya di dalam negeri meski tidak terlalu besar namun jumlahnya terus meningkat. Hingga saat ini seluruh kebutuhan furfural untuk dalam negeri diperoleh melalui impor. Review ini bertujuan untuk melihat potensi kandungan limbah biomassa dari komoditi unggulan di Sumatera Barat, diantaranya limbah tanaman jagung, limbah tanaman kelapa, limbah tanaman kelapa sawit, limbah tanaman tebu,dan limbah tanaman padi. Review yang dilakukan juga untuk melihat hubungan kandungan hemiselulosa dengan rendemen furfural dari limbah-limbah tersebut.
Kata Kunci: Biomassa, Lignoselulosa, Furfural, Hemiselulosa
Teks Lengkap:
PDFReferensi
Adhiksana, A., Wulan, C. N., & Islamiyah, N. H. (2022). Hidrolisis Ampas Tebu Menjadi Furfural Dengan Katalisator Asam Sulfat Berbantukan Gelombang Mikro. Jurnal Teknik Kimia Vokasional, 2(1), 15–21.
Ambalkar, V. U., & Talib, M. I. (2012). Synthesis of Furfural from Lignocellulosic Biomass as Agricultural Residues: A Review. The International Journal of Engineering And Science (IJES), 1(1), 30–36.
Andaka, G. (2011). Hidrolisis Ampas Tebu Menjadi Furfural Dengan Katalisator Asam Sulfat. Jurnal Teknologi, 4, 9.
Atilio de Frias, J., & Feng, H. (2014). Pretreatment of furfural residues with switchable butadiene sulfone in the sugarcane bagasse biorefinery. Green Chemistry, 16(5), 2779–2787. https://doi.org/10.1039/c3gc42632g
Badan Pusat Statistik. (2022). Propinsi Sumatera Barat dalam Angka 2023 (1 ed., Vol. 1). Badan Pusat Statistik Prov. Sumatera Barat.
Chen, H., Qin, L., & Yu, B. (2015). Furfural production from steam explosion liquor of rice straw by solid acid catalysts (HZSM-5). Biomass and Bioenergy, 73, 77–83. https://doi.org/10.1016/j.biombioe.2014.12.013
Chen, H., Zhang, C., Rao, Y., Jing, Y., Luo, G., & Zhang, S. (2017). Methane potentials of wastewater generated from hydrothermal liquefaction of rice straw: Focusing on the wastewater characteristics and microbial community compositions. Biotechnology for Biofuels, 10(1), 140. https://doi.org/10.1186/s13068-017-0830-0
Coniwanti, P., Gusti Siska H., & Eni Handayani. (2016). Pembuatan Furfural Dari Campuran Biomassa Ampas Tebu (Saccharum Officinarum L.) Dan Tempurung Kelapa (Cocos Nucifera L.). Jurnal Teknik Kimia, 22(2), 37–45.
Eseyin, A., E., & Steele, P., H. (2015). An overview of the applications of furfural and its derivatives. International Journal of Advanced Chemistry, 3(2), 42. https://doi.org/10.14419/ijac.v3i2.5048
Fachry, A. R., Astuti, P., & Puspitasari, T. G. (2013). Pembuatan Bietanol Dari Limbah Tongkol Jagung Dengan Variasi Konsentrasi Asam Klorida Dan Waktu Fermentasi. Jurnal Teknik Kimia, 19(1), 10.
Gallo, J. M. R., Alonso, D. M., Mellmer, M. A., Yeap, J. A., Wong, H. C., & Dumesic, J. A. (2013). Production of Furfural from Lignocellulosic Biomass Using Beta Zeolite and Biomass-Derived Solvent. Top Catal, 56, 1775–1781. https://doi.org/10.1007/s11244-013-0113-3
Gozan, M., Panjaitan, J. R. H., Tristantini, D., Alamsyah, R., & Yoo, Y. J. (2018). Evaluation of Separate and Simultaneous Kinetic Parameters for Levulinic Acid and Furfural Production from Pretreated Palm Oil Empty Fruit Bunches. International Journal of Chemical Engineering, 1–12. https://doi.org/10.1155/2018/1920180
Hoang, P. H., Cuong, T. D., & Dien, L. Q. (2021). Ultrasound Assisted Conversion of Corncob-Derived Xylan to Furfural Under HSO3-ZSM-5 Zeolite Catalyst. Waste and Biomass Valorization, 12(4), 1955–1962. https://doi.org/10.1007/s12649-020-01152-9
Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559. https://doi.org/10.1039/C5PY00263J
Jiang, C.-X., Di, J.-H., Su, C., Yang, S.-Y., Ma, C.-L., & He, Y.-C. (2018). One-pot co-catalysis of corncob with dilute hydrochloric acid and tin-based solid acid for the enhancement of furfural production. Bioresource Technology, 268, 315–322. https://doi.org/10.1016/j.biortech.2018.07.147
Jiang, Z., Hu, D., Zhao, Z., Yi, Z., Chen, Z., & Yan, K. (2021). Mini-Review on the Synthesis of Furfural and Levulinic Acid from Lignocellulosic Biomass. Processes, 9(7), 1234. https://doi.org/10.3390/pr9071234
Kumar, A., Chauhan, A. S., Bains, R., & Das, P. (2021). Rice straw (Oryza sativa L.) biomass conversion to furfural, 5-hydroxymethylfurfural, lignin and bio-char: A comprehensive solution. Journal of Industrial and Engineering Chemistry, 104, 286–294. https://doi.org/10.1016/j.jiec.2021.08.025
Lee, C. B. T. L., Wu, T. Y., Cheng, C. K., Siow, L. F., & Chew, I. M. L. (2021). Nonsevere furfural production using ultrasonicated oil palm fronds and aqueous choline chloride-oxalic acid. Industrial Crops and Products, 166, 113397. https://doi.org/10.1016/j.indcrop.2021.113397
Li, H. (2016). Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production. Carbohydrate Polymers, 7.
Li, X., Liu, Q., Si, C., Lu, L., Luo, C., Gu, X., Liu, W., & Lu, X. (2018). Green and efficient production of furfural from corn cob over H-ZSM-5 using γ-valerolactone as solvent. Industrial Crops and Products, 120, 343–350. https://doi.org/10.1016/j.indcrop.2018.04.065
Li, Y.-Y., Li, Q., Zhang, P.-Q., Ma, C.-L., Xu, J.-H., & He, Y.-C. (2021). Catalytic conversion of corncob to furfuryl alcohol in tandem reaction with tin-loaded sulfonated zeolite and NADPH-dependent reductase biocatalyst. Bioresource Technology, 320, 124267. https://doi.org/10.1016/j.biortech.2020.124267
Lin, K.-H., Huang, M.-H., & Chang, A. C.-C. (2013). Liquid phase reforming of rice straw for furfural production. International Journal of Hydrogen Energy, 38(35), 15794–15800. https://doi.org/10.1016/j.ijhydene.2013.06.088
Liu, C., Wei, L., Yin, X., Wei, M., Xu, J., Jiang, J., & Wang, K. (2020). Selective conversion of hemicellulose into furfural over low-cost metal salts in a γ-valerolactone/water solution. Industrial Crops and Products, 147, 112248. https://doi.org/10.1016/j.indcrop.2020.112248
Luo, Y., Li, Z., Li, X., Liu, X., Fan, J., Clark, J. H., & Hu, C. (2019). The production of furfural directly from hemicellulose in lignocellulosic biomass: A review. Catalysis Today, 319, 14–24. https://doi.org/10.1016/j.cattod.2018.06.042
Machado, G., Leon, S., Santos, F., Lourega, R., Dullius, J., Mollmann, M. E., & Eichler, P. (2016). Literature Review on Furfural Production from Lignocellulosic Biomass. Natural Resources, 07(03), 115–129. https://doi.org/10.4236/nr.2016.73012
Majesty, K. I., & Herdiansyah, H. (2019). The Empty Palm Oil Fruit Bunch as the Potential Source of Biomass in Furfural Production in Indonesia: Preliminary Process Design and Environmental Perspective. Journal of Physics: Conference Series, 1363(1), 1–6. https://doi.org/10.1088/1742-6596/1363/1/012096
Mardina, P., Prathama, H. A., & Hayati, D. M. (2016). Pengaruh Waktu Hidrolisis dan Komsentrasi Katalisator Asam Sulfat Terhadap Sintesis Furfural dari Jerami Padi. Konversi, 3(2), 1. https://doi.org/10.20527/k.v3i2.158
Mesa, L., Morales, M., González, E., Cara, C., Romero, I., Castro, E., & Mussatto, S. I. (2014). Restructuring the processes for furfural and xylose production from sugarcane bagasse in a biorefinery concept for ethanol production. Chemical Engineering and Processing: Process Intensification, 85, 196–202. https://doi.org/10.1016/j.cep.2014.07.012
Mohamad, N., Mohamad Yusof, N. N., & Yong, T. L.-K. (2017). Furfural Production Under Subcritical Alcohol Conditions: Effect of Reaction Temperature, Time, and Types of Alcohol. Journal of the Japan Institute of Energy, 96(8), 279–284. https://doi.org/10.3775/jie.96.279
Oh, S.-J., Jung, S.-H., & Kim, J.-S. (2013). Co-production of furfural and acetic acid from corncob using ZnCl2 through fast pyrolysis in a fluidized bed reactor. Bioresource Technology, 144, 172–178. https://doi.org/10.1016/j.biortech.2013.06.077
Peng, B., Ma, C.-L., Zhang, P.-Q., Wu, C.-Q., Wang, Z.-W., Li, A.-T., He, Y.-C., & Yang, B. (2019). An effective hybrid strategy for converting rice straw to furoic acid by tandem catalysis via Sn-sepiolite combined with recombinant E. coli whole cells harboring horse liver alcohol dehydrogenase. Green Chemistry, 21(21), 5914–5923. https://doi.org/10.1039/C9GC02499A
Pino, N., Buitrago-Sierra, R., & López, D. (2020). Conversion of Biomass-Derived Furanics to Fuel-Range Hydrocarbons: Use of Palm Oil Empty Fruit Bunches. Waste and Biomass Valorization, 11(2), 565–577. https://doi.org/10.1007/s12649-019-00599-9
Rahim, M., & Nadir, M. (2015). Optimasi Waktu Hidrolisis Tandan Kosong Kelapa Sawit Menjadi Furfural Berbantukan Gelombang Mikro. Konversi, 4(2), 12. https://doi.org/10.20527/k.v4i2.265
Riansa-ngawong, W., & Prasertsan, P. (2011). Optimization of furfural production from hemicellulose extracted from delignified palm pressed fiber using a two-stage process. Carbohydrate Research, 346(1), 103–110. https://doi.org/10.1016/j.carres.2010.10.009
Sinha A.S.K. (2019). Furfural Production From Rice Straw Using Oxalic Acid Hydrolysis & Sulphuric Acid Dehydration Pretreatment. Pramana Research Journal, 9(4), 467–477.
Subiyanto. (2000). Prospek Industri Pengolahan Limbah Sabut Kelapa. Jurnal Teknologi Lingkungan, 1(1), 1–9.
Sun, Y., Wang, Z., Liu, Y., Meng, X., Qu, J., Liu, C., & Qu, B. (2019). A Review on the Transformation of Furfural Residue for Value-Added Products. Energies, 13(1), 1–19. https://doi.org/10.3390/en13010021
Wang, Q., Qi, W., Wang, W., Zhang, Y., Leksawasdi, N., Zhuang, X., Yu, Q., & Yuan, Z. (2019). Production of furfural with high yields from corncob under extremely low water/solid ratios. Renewable Energy, 144, 139–146. https://doi.org/10.1016/j.renene.2018.07.095
Wang, X., Liu, Y., Cui, X., Xiao, J., Lin, G., Chen, Y., Yang, H., & Chen, H. (2020). Production of furfural and levoglucosan from typical agricultural wastes via pyrolysis coupled with hydrothermal conversion: Influence of temperature and raw materials. Waste Management, 114, 43–52. https://doi.org/10.1016/j.wasman.2020.06.045
Win, D. T. (2005). Furfural – Gold from Garbage. Faculty of Science and Technology, Assumption University Bangkok, Thailand., 8(4), 185–190.
Xu, W., Zhang, S., Lu, J., & Cai, Q. (2017). Furfural production from corncobs using thiourea as additive. Environmental Progress & Sustainable Energy, 36(3), 690–695. https://doi.org/10.1002/ep.12489
Yong, T. L.-K., Mohamad, N., & Yusof, N. N. M. (2016). Furfural Production from Oil Palm Biomass Using a Biomass-derived Supercritical Ethanol Solvent and Formic Acid Catalyst. Procedia Engineering, 148, 392–400. https://doi.org/10.1016/j.proeng.2016.06.495
Zhang, L., Xi, G., Yu, K., Yu, H., & Wang, X. (2017). Furfural production from biomass–derived carbohydrates and lignocellulosic residues via heterogeneous acid catalysts. Industrial Crops and Products, 98, 68–75. https://doi.org/10.1016/j.indcrop.2017.01.014
Zhang, R.-Q., Ma, C.-L., Shen, Y.-F., Sun, J.-F., Jiang, K., Jiang, Z.-B., Dai, Y.-J., & He, Y.-C. (2020). Enhanced Biosynthesis of Furoic Acid via the Effective Pretreatment of Corncob into Furfural in the Biphasic Media. Catalysis Letters, 150(8), 2220–2227. https://doi.org/10.1007/s10562-020-03152-9
Zhao, Y., Xu, H., Wang, K., Lu, K., Qu, Y., & Zhu, L. (2019). Enhanced furfural production from biomass and its derived carbohydrates in the renewable butanone–water solvent system. Sustain. Energy Fuel, 3, 3208–3218.
DOI: https://doi.org/10.31869/mi.v18i1.5557
Article Metrics
Sari view : 82 timesPDF - 42 times
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
INDEXED BY :
Lembaga Penelitian & Pengabdian Masyarakat (LPPM). Universitas Muhammadiyah Sumatera Barat
Jl. Pasir Kandang No.4, Pasie Nan Tigo, Kec. Koto Tangah, Kota Padang, Sumatera Barat 25586.
Email : lppmumsb@gmail.com
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.