REDUKSI SUARA LENGKINGAN PADA STRUKTUR DINAMIK MELALUI MODIFIKASI STRUKTUR ( Squeal Noise Reduction of Dynamic Structure with Modification Structure )
Sari
Dalam penelitian ini telah ditemukan bahwa suara lengkingan yang diakibatkan oleh fenomena
getaran yang disebabkan oleh gesekan yang menghasilkan ketidakstabilan modus terkopel.
Tulisan ini difokuskan pada penggunaan peredam dinamik untuk mengurangi suara
lengkingan. Peredam yang mampu untuk menanggulangi bunyi lengkingan tersebut yaitu
dengan menambahkan massa pada struktur. Kinerja peredam dinamik dalam hal ini melalui
dua kasus sederhana yaitu rangka berbentuk L dan struktur berbentuk cakram bundar pipih
sebagai pemodelan dari bentuk roda kereta api. Melalui penelitian ini diperoleh bahwa
penambahan massa pada struktur yang bergesekan yang menimbulkan bunyi lengkingan dapat
diterapkan untuk menggeser atau mereduksi daerah tak stabil modus terkopel, dengan cara
menghilangkan daerah tak stabil dari kondisi kerja.
Penelitian dengan dua model struktur yaitu struktur rangka berbentuk L dan cakram bundar
sebagai pemodelan dari roda rel kereta api didapatkan bahwa penurunan suara lengkingan bisa
dilakukan dengan penambahan massa pada struktur tersebut. Pada struktur berbentuk L
didapatkan bahwa dengan besarnya massa 21 gr yang ditambahkan di ujung struktur dekat
dengan gesekan mampu meredam bunyi lengkingan sampai dengan frekuensi 2239 Hz. Untuk
struktur berbentuk cakram penambahan massa di tepi cakram sebesar 50 gr dapat
menghilangkan bunyi lengkingan yang terjadi. Penurunan tersebut sampai dengan 2114 Hz.
Kata Kunci : Suara lengkingan, frekuensi, cakram, Ketidakstabilan modus yang terkopel.
Teks Lengkap:
PDFReferensi
Kinkaid, N. Reilly, O.M. and Papadopoulos, P., 2003, Review automotive disc brake
squeal, Journal of Sound And Vibration, Vol. 267, pp. 105-166.
Brunel,J.F., Dufrenoy,P., Demily, F., 2004, Modeling of squeal noise attenuation of ring
damped wheels, Appl. Acoust Vol. 65, pp 457-471.
Rusli, M., Okuma, M., 2007, Effect of surface topography on mode-coupling model of dry
contact sliding, Journal of Sound and Vibration Vol. 308, pp 721-734.
Bonsel, J. H., Fey, R. H. B., and Nijmeijer, H., 2004, Application of a Dynamic Vibration
Absorber to a Piecewise Linear Beam System, Nonlinear Dynamics, Vol.37, pp-227-243.
Rusli, M., Okuma, M., 2008, Squeal Noise Prediction in Dry Contact Sliding Systems by
Means of Experimental Spatial Matrix Identification, Journal of System Design and
Dynamics, Vol. 2, No.2.
Giannini, O., Akay, A., Masi, F., 2006, Experimental analysis of brake squeal noise on a
laboratory brake setup, Journal of Sound and Vibration, Vol. 292, pp.1-20.
Ibrahim, R. A., 1994, Friction-induce vibration, chatter, squeal, and chaos, Part II:
Dynamics and Modeling, ASME Applied Mechanic Review, Vol. 47, No.7, pp. 227-253.
North, M.R., 1972, Disc brake squeal-a theoretical model, Technical Report, 1972/5,
Motor Industry Research Association, Warwickshire, England.
Denou, Y., Nishiwaki, M., 2001, First order analysis of low frequency disk brake squeal,
Technical Report 2001-01-3136, SAE, Warrendale, PA.
Shin, K, Brennan, M.J., Oh, J.-E., Harris, C.J., 2002, Analysis of disk brake noise
using a two-degree-of-freedom model, Journal of Sound and Vibration, Vol. 254 (5), pp.
-848.
Hoffman, N., Fischer, M., Allgaier, R., Gaul, L., 2002, A minimal model for studying
properties of the mode-coupling type instability in friction induced oscillation, Mechanic
Research Communication, Vol. 29, pp. 197-205.
Popp,K., Rudolph, M., Kroger, M., Lindner,M., 2002, Mechanisms to generate and to
avoid friction induced vibrations,VDI-Bericht, Vol.1736.
Mottershead, J.E. and Chan, S.N.,1995, Flutter instability of circular discs with
frictional follower forces, Transactions of the American society of mechanical engineers,
Journal of Vibration And Acoustics, Vol. 117, pp. 161-163.
Huang, J., Krousgrill, C.M., Bajaj, A.K., 2006, Modeling of automotive drum brakes
for squeal and parameter sensitivity analysis, Journal Of Sound And Vibration, Vol. 289,
pp. 245-263
Guan, D., Su, X., Zhang, F., 2006, Sensitivity analysis of brake squeal tendency to
substructuresmodal parameters, Journal Of Sound And Vibration, Vol. 291, pp. 72-80
Triches, M., Gerges, S.N.Y. and Jordan, R., 2004, Reduction of squeal noise from disc
brake systems using constrained layer damping, Journal of the Brazilian Society of
Mechanical Sciences and Engineering, Rio de Janeiro.
Remington, P.J., 1986, Wheel/rail squeal and impact noise: what do we know? What
don't we know? Wheredo we go from here, Journal of Sound and Vibration, Vol. 116(2),
pp. 339-353.
Rudd. M.J., 1976, Wheel/rail noise, part II: wheel squeal, Journal of Sound and
Vibration, Vol. 46, pp. 381-394.
Eadie , D.T., Santoro, M., 2006, Top kontrol gesekan rel untuk kurva mitigasi
kebisingan dan pengurangan tingkat kerut, Journal of Sound and Vibration,Vol. 293, hlm
-757.
Heckl, M.A., Abrahams, I.D., 2000, Curve squeal of train wheels, part 1:
Mathematical model for its generation, Journal of Sound and Vibration, Vol. 229, pp. 669693.
J.A. Greenwood, J.P.B. Williamson, Contact of nominally flat surfaces,
Proceedings of the Royal Society of London A 316 (1970) 97-121.
J.A. Greenwood, J.H. Tripp, The elastic contact of rough spheres, Journal of
Applied Mechanics (1967) 153-159.
N. Tayebi, A.A. Polycarpou, Modeling the effect of skewness and kurtosis on the
static friction coefficient of rough surfaces, Tribology International 37 (2004) 491-505.
R.D. Midlin, Compliance of elastic bodies in contact, Transactions of the ASME
Journal of Applied Mechanics 16 (1949) 259-268.
S. Filippi, Experimental validation of contact models for small tangential
displacement, XXXII Covegno Nazionale dell 'Associazone Italianz perl'Analisi delle
sollecitazioni, AIAS, 2003, paper 112.
A. Baltazar, S.I. Rockhlin, C. Pecorari, On the relationship between ultrasonic and micro
mechanical properties of contacting rough surfaces, Journal of the Mechanics and Physics
of Solids 50 (2002) 1397-1416.
P.B. Nagy, Ultrasonic classification of imperfect interfaces, Journal of Nondestructive
Evaluation 11 (1992) 127-139.
H.A. Sherif, Mode of zero wear in mechanical systems with dry contact, Tribology
International 38 (2005) 59-68.
M. Nosonovsky, B. Bhusan, Scale effect in dry friction during multiple asperity contact,
Transactions ofthe ASME Journal of Tribology 127 (2006) 37-46.
H. Yoshizawa, Y.L. Chen, J. Israelachvili, Fundamental mechanism of interfacial
friction,1. Relation between adhesion and friction, Journal of Physical Chemistry 97
(1993) 4128-4140.
M. Eriksson, F. Bergman, S. Jacobson, On the nature of tribological contact
in
automotives brake, Wear 252 (2002) 26-36.
K. A. Cunefare and A. J. Graf, Experimental active control of automotive disc brake rotor
squeal using dither, J. Sound Vibr. 250 (2002) 579-590.
N. Hofman, M. Fischer, R. Allgaier and L. Gaul, A minimal model for studying properties
of the mode-coupling type instability in friction induced oscillation, Mech. Res.
Commun.29 (2002) 197-205.
M. Rusli and M. Okuma, Squeal noise prediction in dry contact sliding systems by
means of eksperimental spatial matrix identification, J.Syst. Design Dynam.2(3) 2008)
-595
M.Rusli and M. Okuma, Effect of surface topography on mode-coupling model of
drycontact sliding systems, J. Sound Vibr. 308(2007) 721-734.
DOI: https://doi.org/10.33559/mi.v11i77.384
Article Metrics
Sari view : 120 timesPDF - 115 times
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
INDEXED BY :
Lembaga Penelitian & Pengabdian Masyarakat (LPPM). Universitas Muhammadiyah Sumatera Barat
Jl. Pasir Kandang No.4, Pasie Nan Tigo, Kec. Koto Tangah, Kota Padang, Sumatera Barat 25586.
Email : lppmumsb@gmail.com
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.