Perencanaan Ulang Geometrik Dan Perkerasan Jalan Pada Ruas Jalan Batas Kota Padang – Kota Painan KM 70+000 - KM 72+700

Elsa Eka Putri¹, Muhammad Iqbal²

Fakultas Teknik, Universitas Andalas^{1,2} Email: elsaeka@eng.unand.ac.id ¹, moehammad0021@gmail.com ² DOI: http://dx.doi.org/10.31869/rtj.v5i1.2813

Abstract Software bisa membantu pekerjaan menjadi mudah dan cepat. Autodesk Infraworks adalah salah satu software yang dapat mempermudah perencanaan jalah dan merupakan software yang cukup banyak digunakan oleh negara maju. Perencanaan ulang geometrik jalan meliputi perhitungan tebal perkerasan serta anggaran biaya dengan studi kasus pada jalan batas Kota Padang - Kota Painan KM 70+000 - KM 72+700 yang berlokasi di Sago Salido, IV Jurai, Kabupaten Pesisir Selatan, Provinsi Sumatera Barat. Jalan batas Kota Padang - Kota Painan ini merupakan jalur Lintas Sumatra yang menghubungkan antara Provinsi Sumatera Barat dengan Provinsi Bengkulu. Tujuan dari penelitian ini adalah merencanakan ulang geometrik jalan, tebal perkerasan jalan, dan rencana anggaran biaya berdasarkan standar dan peraturan yang berlaku di Indonesia, sehingga dapat bermanfaat sebagai referensi dalam perencanaan jalan dengan menggunakan software Autodesk Infraworks yang disesuaikan dengan peraturan yang berlaku di Indonesia. Perencanaan geometrik jalan menggunakan aplikasi Autodesk infraworks didapatkan hasil untuk jalan kolektor kelas III A ini, sepanjang 2706,38 m yang memiliki 8 tikungan dan 6 lengkung vertikal serta volume galian sebesar 21550,44 m³ dan volume timbunan sebesar 21519,47 m³. Perhitungan tebal perkerasan dilakukan berdasarkan Manual Desain Perkerasan (MDP) tahun 2017 dengan menggunakan struktur perkerasan kaku sehingga didapatkan struktur perkerasan dengan hasil pelat beton dengan tebal 40 mm, lapis fondasi LMC dengan tebal 60 mm dan lapis drainase dengan tebal 145 mm. Dari perencanaan jalan ini diperoleh rencana anggaran biaya sebesar Rp. 43.447.698.000,00 (empat puluh tiga milyar empat ratus empat puluh tujuh juta enam ratus sembilan puluh delapan ribu rupiah). Sehingga dapat disimpulkan aplikasi Autodesk Infraworks dinilai dapat mempermudah pelaksanaan dan penggambaran dalam pekerjaan serta menghemat waktu, dengan standar AASHTO (American Association of State Highway and Transportation Officials) tahun 2011 dengan perbedaan hasil perhitungan kecil dari 1%.

Keywords: Autodesk Infraworks, Geometrik Jalan, Perkerasan Jalan, Rencana Anggaran Biaya

PENDAHULUAN

Autodesk Infraworks merupakan salah satu software keluaran Autodesk yang dapat memodelkan. manganalisis, dan memvisualisasikan konsep desain perencanaan. Software ini dinilai dapat mempermudah perencanaan ialan merupakan software yang cukup banyak digunakan oleh negara maju.

InfraWorks ini merupakan salah satu software yang banyak digunakan dalam lingkup Building Information Modelling (BIM) untuk desain proyek infrastruktur. InfraWork memungkinkan untuk merencanakan suatu infrastruktur dalam waktu yang singkat dengan hasil yang cukup akurat (PT. Adi Karya, 2020; Syaputra, 2021).

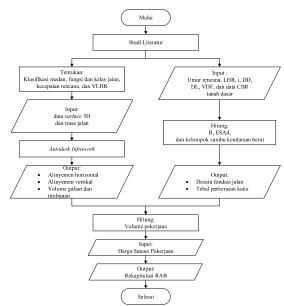
Penelitian ini merupakan perencanaan ulang geometrik jalan menggunakan Autodesk Infraworks dan menghitung tebal perkerasan serta anggaran biaya dengan studi kasus pada jalan batas Kota Padang - Kota Painan KM 70+000 - KM 72+000 yang berlokasi di Sago Salido, IV Jurai, Kabupaten Pesisir Selatan, Provinsi Sumatera Barat. Jalan batas Kota Padang - Kota Painan ini merupakan jalur Lintas Sumatra yang menghubungkan antara Provinsi Sumatera Barat dengan Provinsi Bengkulu. Selanjutnya hasilnya dibandingkan perhitungan hasil manual dengan menggunakan standar Bina Marga. Sehingga bermanfaat sebagai referensi dalam jalan dengan menggunakan perencanaan Infraworks software Autodesk yang disesuaikan dengan peraturan yang berlaku di Indonesia

METODE PENELITIAN

Perencanaan geometrik jalan dilakukan di ruas jalan batas Kota Padang - Kota Painan pada KM 70+000 hingga KM 72+700 yang berlokasi di Sago Salido, IV Jurai, Kabupaten

ISSN 2599-2081 Fakultas Teknik UMSB 83

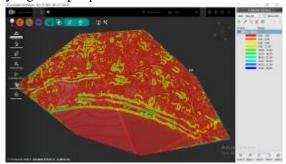
Pesisir Selatan, Provinsi Sumatera Barat. Perencanaan yang dilakukan adalah perencanaan ulang geometrik dan tebal perkerasan jalan serta menghitung anggaran biayanya, dengan menggunakan data sekunder berupa data kontur, data CBR, dan lalu lintas harian rata-rata dari ruas jalan batas kota Padang - kota Painan km 70+000 - km 72+700 yang didapatkan dari Satker Perencanaan dan Pengawasan Jalan Nasional (P2JN) Sumatera Barat.


Penelitian ini juga menggunakan data CBR dan LHR ruas jalan batas Kota Padang - Kota Painan yang diperoleh dari PT. WIRA WIDYATAMA selaku konsultan perencana dalam Proyek Pelebaran ruas jalan batas Kota Padang - Kota Painan KM 70+000 - KM 72+700. Sedangkan gambar perencanaan ruas jalan tersebut dan data kontur daerah Sago Salido didapat dari website DEMNAS dan diolah di software Global Mapper.

Parameter untuk perencanaan geometrik jalan mengacu kepada standar Bina Marga 2017 dan TPGJAK 1997, yang selanjutnya dengan diolah menggunakan aplikasi Autodesk Infraworks. Parameter diinputkan seperti panjang maksimal bagian lurus, jari - jari lengkung minimum, panjang lengkung peralihan, jari - jari minimum yang tidak memerlukan peralihan, jarak pandang henti, jarak pandang mendahului, kelandaian vertikal maksimum, panjang minimum lengkung vertical, kecepatan rencana, dan input lainnya berdasarkan dari standar bina marga.

Perencanaan geometrik jalan ini, tidak memperhitungkan kebebasan samping dan pelebaran tikungan dan juga perencanaan ini tidak menghitung pekerjaan jembatan, perencanaan drainase dan jarak penyinaran lampu yang ada.

Jenis perkerasan yang digunakan pada perencanaan ini adalah perkerasan kaku dengan perencanaan tebal perkerasan jalan mengacu kepada Manual Desain Perkerasan (MDP) tahun 2017.


Perhitungan rencana anggaran biaya menggunakan harga satuan yang ditetapkan oleh Dinas Pekerjaan Umum dan Penataan Ruang kota Padang edisi triwulan IV, untuk menghitung pekerjaan perkerasan jalan serta pekerjaan galian dan timbunan. Gambar 1, adalah bagan alir dari penelitian yang dilakukan.

Gambar 1. Bagan Alir Penelitian

HASIL DAN PEMBAHASAN

Pengklasifikasian medan pada software Autodesk Infraworks diperoleh hasil seperti yang terdapat pada Gambar 2.

Gambar 2: Klasifikasi Medan

Terlihat pada Gambar 2, bahwa pada peta surface 3D didominasi oleh warna merah, dimana warna merah merupakan warna untuk rentang kemiringan medan 0% - 3%. Sehingga dapat diambil kesimpulan bahwa klasifikasi medan pada jalan batas Kota Padang – Kota Painan KM 70+000 – KM 72+700 termasuk pada medan datar (Bina Marga, 2017; Sukirman, 1999)

Selajutnya, pengklasifikasian medan ini juga dilakukan dengan bantuan *Autocad Civil 3D* untuk menambah keakuratannya. Hasil didapatkan adalah kemiringan medan 1,76%, dimana hasil kemiringan medan ini merupakan kemiringan untuk medan datar.

Volume Lalu Lintas Rencana

Volume lalu lintas rencana (VLHR) pada jalan batas Kota Padang – Kota Painan dihitung berdasarkan data LHR tahun 2017 yang diproyeksikan ke awal tahun rencana yaitu tahun 2021 dengan faktor pertumbuhan lalu lintas senilai 1% berdasarkan data sekunder yang telah diperoleh dari Satker Perencanaan dan Pengawasan Jalan Nasional (P2JN) Sumatera Barat dengan umur rencana yang ditetapkan yaitu 20 tahun. Hasil perhitungan VLHR yang didapatkan yaitu sebesar 37033,081 smp/jam, seperti yang terlihat pada Tabel 1.

Tabel 1. Perhitungan VLHR

	1 abel 1. I clilituii	gan	V L	111/					
Golongan / Kelompok	Jenis Kendaraan	LHR 2017	LHR 2021	emp	VLHR				
1	Sepeda motor, sekuter, sepeda kumbang dan kendaraan bermotor roda 3	8341	8680	1	10590,857				
2	Sedan, jeep, dan station wagon	4197	4367	1	5329,076				
3	Opelet , pick-up opelet , sub urban , combi dan minibus	3484	3625	2	8847,511				
4	Pick-up , micro truck dan mobil hantaran atau pick-up box	2559	2663	2	6498,502				
5a	Bus kecil	218	227	2	553,604				
5b	Bus besar	37	39	3	140,941				
6a	Truk 2 sumbu 4 roda	293	305	3	1116,097				
6b	Truk 2 sumbu 6 roda	572	595	3	2178,865				
7a	Truk 3 sumbu	267	278	5	1695,096				
7b	Truk gandengan	13	14	5	82,533				
7c	Truk semi trailer	0	0	5	0,000				
8	Kendaraan tidak bermotor	0	0	1	0,000				
	Total								

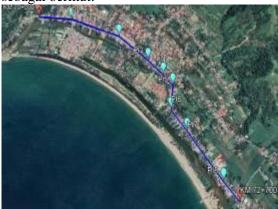
Fungsi dan Kelas Jalan

Berdasarkan Keputusan Mentri Pekerjaan Umum Dan Perumahan Rakyat tahun 2015 tentang penetapan ruas jalan dalam jaringan jalan primer menurut fungsinya sebagai jalan arteri (JAP) dan jalan kolektor – 1 (JKP – 1), jalan batas Kota Padang – Kota Painan merupakan jalan kolektor, dan berdasarkan Keputusan Mentri Perhubungan tahun 2000 tentang penetapan kelas jalan di pulau Sumatera jalan batas Kota Padang – Kota Painan merupakan jalan kolektor kelas III A.

Kecepatan Rencana

Karena jalan batas Kota Padang – Kota Painan berfungsi sebagai jalan kolektor dan memiliki medan yang datar, maka kecepatan rencana yang digunakan pada perencanaan jalan batas Kota Padang – Kota Painan KM 70+000 – KM 72+700 yaitu 60 km/jam (Bina Marga, 2018).

Penampang Melintang

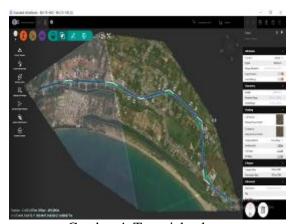

EISSN 2599-2090

Berdasarkan TPGJAK 1997, jalur lalu lintas pada jalan batas Kota Padang – Kota Painan KM 70+000 – KM 72+700 adalah tipe 2 jalur - 4 lajur – 2 arah (4/2 B) yang masingmasing jalur memiliki lebar 7 m dan bahu jalan dengan lebar 2 m. Untuk kemiringan normal alinemen lurus pada lajur jalan,

direncanakan 2% karena perkerasan yang direncanakan pada penelitian ini adalah perkerasan kaku, dan bentuk median yang digunakan pada perencanaan ini adalah median ditinggikan dengan lebar 2 m.

Alinemen Horizontal

Perencanaan trase jalan batas Kota Padang – Kota Painan KM 70+000 – KM 72+700 didasarkan kepada data perencanaan yang didapatkan dari Satker P2JN dengan koordinat titik awal dan titik akhir serta koordinat PI sebagai berikut:


Gambar 3. Trase jalan lama Data koordinat dari titik-titik pada Gambar 3 adalah sebagai berikut:

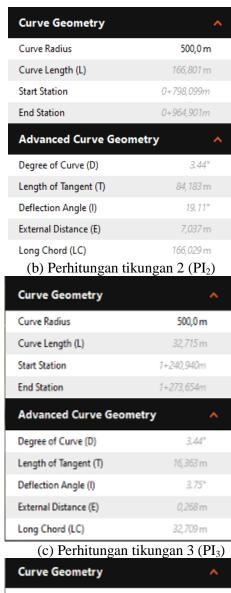
- Titik awal : 671233,66; 9855598,69
- PI1 : 671583,86; 9855573,65
- PI2: 672089,52; 9855409,10
- PI3: 672389,71; 9855181,73
- PI4: 672540,92; 9855050,81
- PI5 : 672632.74: 9854954.82
- PI6: 672605,93; 9854749,74
- PI7 : 672751,21; 9854576,45
- PI8: 673060,51; 9854190,37
- Titik akhir : 673190,59; 9854049,01

Namun setelah dilakukan perencanaan dengan software Autodesk Infraworks, tikungan pada PI6 memerlukan jari-jari tikungan yang kecil, sehingga perlu digunakan tikungan SS (spiral spiral), sedangkan tikungan SS tidak dapat diaplikasikan pada Autodesk Infraworks, karena pada Autodesk Infraworks hanya bisa menggunakan tikungan FC (full circle) dan SCS (spiral circle spiral) sehingga dilakukan perubahan koordinat PI6 menjadi 672598,04; 9854717,28.

Jalan yang direncanakan memiliki panjang 2706,381 m, yang dimulai dari Sta 00+000 m dan berakhir pada Sta 2+706,381 m seperti yang terdapat pada Gambar 4

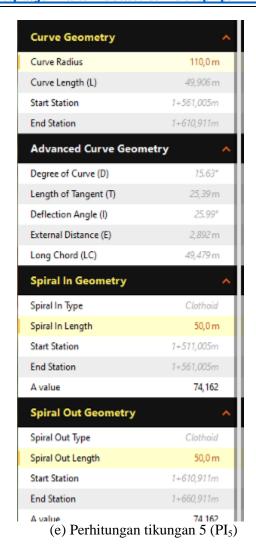
85

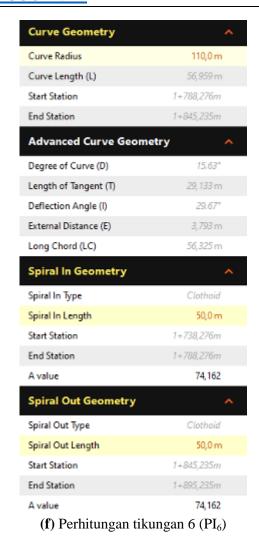
Gambar 4. Trase jalan baru

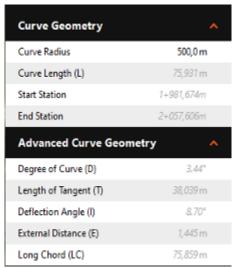

Perencanaan Tikungan

Tikungan pada jalan batas Kota Padang – Kota Painan KM 70+000 – KM 72+700 direncanakan ulang dengan bantuan software Autodesk Infraworks. Hasil perencanaan didapatkan 2 macam tikungan yaitu 6 tikungan full circle (FC) pada PI1, PI2, PI3, PI4, PI7, dan PI8 dengan jari-jari tikungan 500 m serta 2 tikungan spiral circle spiral (SCS) pada PI5, dan PI6.dengan jari-jari 110 m dan panjang lengkung peralihan 50 m. Penetapan jari-jari dan lengkung peralihan pada perencanaan ini ditetapkan berdasarkan kecepatan rencana (SSPGJLK, 1990; TPGJAK, 1997).

Hasil perhitungan tikungan oleh software Autodesk Infraworks dapat dilihat tampilannya pada Tabel 2(a) sampai Tabel 2(h)

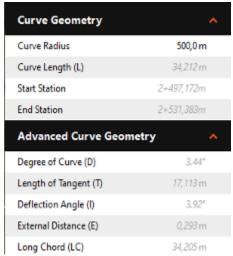

Curve Geometry	^
Curve Radius	500,0 m
Curve Length (L)	121,614 m
Start Station	0+289,999m
End Station	0+411,612m
Advanced Curve Geon	netry ^
Degree of Curve (D)	3,44*
Length of Tangent (T)	61,108 m
Deflection Angle (I)	13.94°
External Distance (E)	3,72 m
Long Chord (LC)	121,314 m


(a) Perhitungan tikungan 1 (PI₁)



Curve Radius 500,0 m Curve Length (L) 46,979 m Start Station 1+433,809m End Station Advanced Curve Geometry Degree of Curve (D) 3.44° Length of Tangent (T) 23,507 m Deflection Angle (I) 5.38° External Distance (E) 0,552 m Long Chord (LC) 46,961 m

(d) Perhitungan tikungan 4 (PI₄)



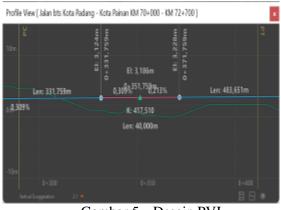
(g) Perhitungan tikungan 7 (PI₇)

87

(h) Perhitungan tikungan 8 (PI₈)

Perhitungan dan perencanaan dengan Autodesk Infraworks ini di validasi dengan perhitungan manual berdasarkan perhitungan Bina Marga 2018. Perhitungan yang diperoleh dengan software Autodesk Infraworks ini kemudian dibandingkan dengan hasil perhitungan manual, dan dapat disimpulkan bahwa perhitungan untuk tikungan FC maupun SCS pada Autodesk Infraworks tidak jauh berbeda dengan hasil perhitungan manual, seperti yang terlihat pada pada Tabel 3 dan 4.

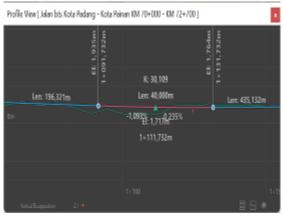
Tabel 3 Perhitungan Tikungan 1 (FC)

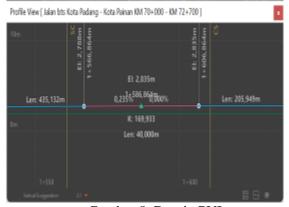

	Tuber & Termitangan Tikangan T (Te)										
	Input data										
Rc 500											
	VR	60									
	ΔΡΙ	13,94									
	Output	data									
	Manual		Infraworks	Kesimpulan							
Tc	$Rc \times tan(\Delta PI/2)$	61,127	61,108	beda 0,019							
Ec	$Tc \times tan(\Delta PI/4)$	3,723	3,72	beda 0,003							
Lc	$(\Delta PI/360) \times 2\pi \times Rc$	121,649	121,314	beda 0,335							

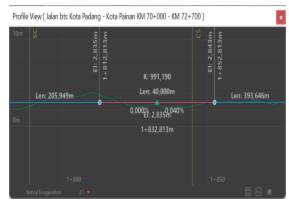
Tabel 4 Perhitungan Tikungan 5 (SCS)

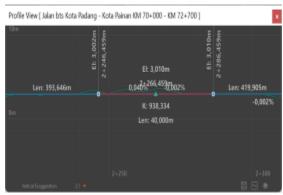
	Input data											
	Rc		110									
	VR		60									
ΔΡΙ 29,67												
	Ls	50										
	Output	data										
	Manual		Infraworks	Kesimpulan								
Tc	$Rc \times tan(\Delta PI/2)$	29,135	29,133	beda 0,002								
Ec	$Tc \times tan(\Delta PI/4)$	3,793	3,793	sama								
Lc	$(\Delta PI/360) \times 2\pi \times Rc$	56,962	56,325	beda 0,637								

1.1 Alinemen Vertikal


Alinemen vertikal pada perencanaan ini direncanakan ulang sehingga memiliki 6 PVI yaitu 2 lengkung vertikal cekung dan 4 lengkung vertikal cembung. Panjang lengkung vertikal yang digunakan adalah 40 m. Desain perencanaan alinemen vertikal dapat dilihat pada Gambar 5 hingga Gambar 10.


Gambar 5 Desain PVI₁


Gambar 6. Desain PVI₂


Gambar 7. Desain PVI₃

Gambar 8. Desain PVI₄

Gambar 9. Desain PVI₅

Gambar 10. Desain PVI6

Galian dan Timbunan

Perhitungan galian dan timbunan dihitung secara otomatis oleh software Autodesk Infraworks dengan volume galian sebesar 21550,438 m³ dan volume timbunan sebesar 21519,470 m³, sehingga didapatkan volume galian lebih besar dari volume timbunan dengan selisih sebesar 30,967 m³ seperti yang terdapat pada Gambar 11.

Gambar 11. Perhitungan volume galian dan timbunan

Perkerasan Jalan

Jenis perkerasan jalan yang digunakan adalah perkerasan kaku, sehingga umur rencana yang direncanakan yaitu 40 tahun.

Analisis lalu lintas pada perencanaan perkerasan menggunakan MDP terdiri dari:

Lalu lintas harian

Data lalu lintas harian (LHR) yang digunakan dalam perencanaan perkerasan ini menggunakan data hasil survey tahun 2017 yang diperoleh dari Satker P2JN dengan data yang dapat dilihat pada Tabel 5.

Tabel 5. Data LHR 2017

Golongan / Kelompok	lenis Kendaraan				
1	Sepeda motor, sekuter, sepeda kumbang dan kendaraan bermotor roda 3	8341			
2	Sedan, jeep, dan station wagon	4197			
3	Opelet, pick-up opelet, sub urban, combi dan minibus	3484			
4	Pick-up, micro truck dan mobil hantaran atau pick-up box	2559			
5a	Bus kecil	218			
5b	Bus besar	37			
6a	Truk 2 sumbu 4 roda	293			
6b	Truk 2 sumbu 6 roda	572			
7a	Truk 3 sumbu	267			
7b	Truk gandengan	13			
7c	Truk semi trailer	0			
8	Kendaraan tidak bermotor	0			

Menghitung faktor pertumbuhan kumulatif dihitung berdasarkan faktor pertumbuhan lalu lintas dan umur rencana sehingga diperoleh faktor pertumbuhan kumulatif (cumulative growth factor) sebesar 48,886 dengan perhitungan sebagai berikut:

$$R = ((1+0,01i)^{UR-1})/0,01i$$

$$= ((1+0,01(0,01))^{40-1})/0,01(0,01)$$

$$= 48,886$$
(1)

Untuk faktor distribusi lalu lintas pada lajur rencana yang mengacu kepada MDP No. 02/M/BM/2017 dengan hasil ketetapan sebagai berikut:

Faktor distribusi arah (DD): 0,50 Faktor distribusi lajur (DL): 0,80

Perhitungan Beban Gandar Standar

Karena data LHR yang didapatkan merupakan data survey pada tahun 2017, maka terlebih dahulu dilakukan perhitungan LHR untuk awal tahun rencana yaitu tahun 2021 berdasarkan laju pertumbuhan lalu lintas. Hasil perhitungan beban gandar standar / Equivalent Standard Axle (ESA4) dapat dilihat pada Tabel 6.

Tabe	el 6 Per	hitung	an beba	ın gandar	standar							
	(ESA4)											
Golongan /	I HR 2017	I HR 2021	VDF4 normal	ESA4	ESA4							

Golongan / Kelompok	LHR 2017	LHR 2021	VDF4 normal	ESA4 (20 tahun)	ESA4 (40 tahun)
1	8341	8679,678	-	-	-
2	4197	4367,415	-	-	-
3	3484	3625,464	-	-	-
4	2559	2662,906	-	-	-
5a	218	226,852	-	-	-
5b	37	38,502	1	123776,371	274807,066
6a	293	304,897	0,55	539096,275	1196896,180
6b	572	595,225	3,4	6505953,681	14444453,563
7a	267	277,841	5,4	4823264,098	10708562,910
7b	13	13,528	-	-	-
7c	0	0,000	7	0,000	0,000
8	0	0,000	-	-	-
	CE	SA4	11992090,425	26624719,719	

Pemilihan Struktur Perkerasan

Karena hasil perhitungan CESA4 dalam 20 tahun yang diperoleh sebesar $11,99 \times 10^6$, maka untuk jenis perkerasan kaku digunakan struktur perkerasan kaku dengan lalu lintas berat diatas tanah dengan CBR $\geq 2,5$ %.

Desain Fondasi Jalan

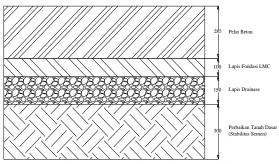
Berdasarkan data CBR yang telah diperoleh dari satker P2JN, didapatkan nilai CBR tanah dasar pada jalan batas Kota Padang – Kota Painan KM 70+000 – KM 72+700 yaitu 5,62 % yang dihitung dengan perhitungan sebagai berikut:

$$CBR = CBR_{rata-rata} - f \times deviasi standar$$

 $CBR = 7,41 - 1,282 \times 1,396$
 $CBR = 5,62$

Dari nilai CBR tanah dasar ini maka, pada jalan batas Kota Padang – Kota Painan KM 70+000 – KM 72+700 diperlukan perbaikan tanah dasar berupa stabilisasi semen dengan kedalaman 300 mm.

Desain Struktur Perkerasan


Untuk menentukan desain struktur perkerasan kaku diperlukan perhitungan jumlah kelompok sumbu masing — masing jenis kendaraan dengan umur rencana 40 tahun sehingga didapatkan kumulatif kelompok sumbu kendaraan berat selama umur rencana yaitu $19,73 \times 10^6$. perhitungan jumlah kelompok sumbu kendaraan berat dapat dilihat pada Tabel 7.

Tabel 7. Perhitungan kelompok sumbu kendaraan berat

Jumlah Kelompok Sumbu	LHR 2017	LHR 2021	Kelompok Sumbu 2021	Jumlah Kelompok Sumbu 2021 - 2061					
2	37	38,502	77,005	549614,132					
2	293	304,897	609,794	4352349,747					
2	572	595,225	1190,451	8496737,390					
3	267	277,841	833,524	5949201,616					
4	13	13,528	54,111	386215,336					
4	0	0,000	0,000	0,000					
Kumulatif kelompok sumbu kendaraan berat 2021 - 2061									
	Kelompok Sumbu 2 2 2 3 4	Kelompok Sumbu LHR 2017 2 37 2 293 2 572 3 267 4 13 4 0	Kelompok Sumbu LHR 2017 LHR 2021 2 37 38,502 2 293 304,897 2 572 595,225 3 267 277,841 4 13 13,528 4 0 0,000	Kelompok Sumbu LHR 2017 LHR 2021 Kelompok Sumbu 2021 2 37 38,502 77,005 2 293 304,897 609,794 2 572 595,225 1190,451 3 267 277,841 833,524 4 13 13,528 54,111 4 0 0,000 0,000					

Karena kumulatif kelompok sumbu kendaraan berat desain 19,73 × 10⁶ maka didapatkan struktur perkerasan menggunakan sambungan dowel serta ketebalan lapis perkerasan sebagai berikut:

Lapis beton : 285 mm Lapis fondasi LMC : 100 mm Lapis drainase : 150 mm

Gambar 12. Desain perkerasan jalan

Rencana Anggaran dan Biaya

Rencana Anggaran Biaya (RAB) adalah perhitungan banyaknya biaya yang diperlukan untuk bahan dan upah, serta biaya – biaya lain yang berhubungan dengan pelaksanaan proyek tersebut (Ibrahim, 1993). Pembuatan RAB bertujuan untuk mengetahui harga dari setiap item pekerjaan konstruksi, dan menjadi pedoman dalam pengeluaran biaya pada suatu pekerjaan suatu proyek.

Volume Pekerjaan

Uraian perhitungan dan hasil perhitungan volume pekerjaan jalan batas Kota Padang – Kota Painan KM 70+000 – KM 72+700 dapat dilihat pada Tabel 8.

Tabel 8. Perhitungan volume pekerjaan

Item Pekerjaan	Satuan		Urai	an perhitungan		Volume
Pelat Beton	m³	Panjang (p)	=	2706,381	m	10798,460
		Lebar (l)	=	14	m	
		Tebal (t)	=	0,285	m	
		Volume	=	$p\times l\times t$		
			=	10798,460	m^3	
Lapis Fondasi LMC	m³	Panjang (p)	=	2706,381	m	3788,933
		Lebar (l)	=	14	m	
		Tebal (t)	=	0,1	m	
		Volume	=	$p\times l\times t$		
			=	3788,933	ton	
Lapis Drainase	m³	Panjang (p)	=	2706,381	m	5683,400
		Lebar (l)	=	14	m	
		Tebal (t)	=	0,15	m	
		Volume	=	$p\times l\times t$		
			=	5683,400	ton	
Stabilisasi Semen	Ton	Panjang (p)	=	2706,381	m	24324,952
		Lebar (l)	=	14	m	
		Tebal (t)	=	0,3	m	
		Berat isi	=	2,14	T/m^3	
		Volume	=	$(p \times l \times t) \times Berat \ isi$		
			=	24324,952	Ton	
Galian	m³	Volume	=	21550,438	m³	21550,438
Timbunan	m³	Volume	=	21519,47	m³	21519,470

Harga Satuan Pekerjaan

Harga satuan yang digunakan untuk menghitung harga satuan pekerjaan jalan batas Kota Padang – Kota Painan KM 70+000 – KM 72+700 didapatkan berdasarkan Daftar Harga Satuan Pekerjaan Bidang ke PU-an dan HSBGN tahun anggaran 2020 edisi triwulan IV yang dikeluarkan oleh Dinas Pekerjaan Umum dan Penataan Ruang Kota Padang pada Oktober 2020. Perhitungan harga satuan pekerjaan dapat dilihat pada Tabel 9 hingga Tabel 14.

Tabel 9. HSP pekerjaan pelat beton

	r aber :	DC	lOH										
NO.	KOMPONEN	KODE	SATUAN	PERKIRAAN KUANTITAS	HAR	GA SATUAN	JUM	ILAH HARGA					
A.	TENAGA												
1.	Pekerja	L01	jam	0,5020	Rp	15.000,00	Rp	7.530,12					
2.	Mandor	L03	jam	0,1004	Rp	25.000,00	Rp	2.510,04					
JUM	JUMLAH HARGA TENAGA												
B.	BAHAN												
1	Semen	M12	Kg	334,7500	Rp	1.247,50	Rp	417.600,63					
2	Pasir Beton	M01a	m³	0,5163	Rp	179.800,00	Rp	92.832,60					
3	Agregat Pecah Mesin 20 - 30 mm (Agregat Kasar)	M93	m³	0,9414	Rp	245.400,00	Rp	231.014,48					
4	Air	M170	m³	0,1638	Rp	18.100,00	Rp	2.964,24					
5	Plasticizer	M171	m³	1,0043	Rp	40.000,00	Rp	40.170,00					
6	Baja Tulangan Polos	M39a	Kg	15,8750	Rp	12.000,00	Rp	190.500,00					
7	Joint Sealent	M94	Kg	0,9900	Rp	37.500,00	Rp	37.125,00					
8	Cat Anti Karat	M95	Kg	0,0200	Rp	73.900,00	Rp	1.478,00					
9	Expansion Cap	M96	m²	0,1700	Rp	9.500,00	Rp	1.615,00					
10	Polytene 125 mikron	M97	Kg	0,4375	Rp	23.100,00	Rp	10.106,25					
11	Curing Compound	M98	Ltr	0,8700	Rp	46.200,00	Rp	40.194,00					
JUM	LAH HARGA BAHAN						Rp	1.065.600,19					
C.	PERALATAN												
1	Wheel Loader	E15	jam	0,0071	Rp	518.040,63	Rp	3.671,44					
2	Concrete Pan Mixer	E43	jam	0,0502	Rp	733.428,86	Rp	36.818,72					
3	Truck Mixer Agitator	E49	jam	0,2382	Rp	729.273,44	Rp	173.744,98					
4	Concrete Paver	E42	jam	0,0038	Rp	600.028,40	Rp	2.295,00					
5	Alat Bantu		Ls	1,0000	Rp	-	Rp	-					
JUM	LAH HARGA PERALATAN						Rp	216.530,14					
D.	JUMLAH HARGA TENAGA	, BAHA	N DAN PE	RALATAN (A	+ B +	C)	Rp	1.292.170,50					
E.	OVERHEAD & PROFIT		10	% x D			Rp	129.217,05					
F.	HARGA SATUAN PEKERJA	Rp	1.421.387,55										

Tabel 10. HSP pekerjaan lapis fondasi LMC

NO.	KOMPONEN	KODE	SATUAN	PERKIRAAN KUANTITAS	HAR	GA SATUAN	JUM	LAH HARGA
A.	TENAGA							
1.	Pekerja	L01	jam	0,4016	Rp	15.000,00	Rp	6.024,00
2.	Mandor	L03	jam	0,1004	Rp	25.000,00	Rp	2.510,00
JUM	UMLAH HARGA TENAGA							
B.	BAHAN						•	
1	Semen	M12	Kg	233,8100	Rp	1.247,50	Rp	291.677,98
2	Pasir Beton	M01a	m³	0,5996	Rp	179.800,00	Rp	107.805,60
3	Agregat Kasar	M03	m³	0,9247	Rp	245.400,00	Rp	226.927,30
4	Air	M170	m³	0,1638	Rp	18.100,00	Rp	2.964,24
5	Plasticizer	M171	Kg	0,7014	Rp	40.000,00	Rp	28.057,20
6	Formwork Plate	M195	m²	0,1900	Rp	45.000,00	Rp	8.550,00
JUM	LAH HARGA BAHAN						Rp	665.982,32
C.	PERALATAN							
1	Wheel Loader	E15	jam	0,0071	Rp	518.040,63	Rp	3.671,44
2	Concrete Pan Mixer	E43	jam	0,0502	Rp	733.428,86	Rp	36.818,72
3	Truck Mixer Agitator	E49	jam	0,2382	Rp	729.273,44	Rp	173.744,98
4	Concrete Vibrator (for manual)	E20	jam	0,3012	Rp	59.286,90	Rp	17.857,50
5	Alat Bantu		Ls	1,0000	Rp	-	Rp	-
JUM	LAH HARGA PERALATAN						Rp	232.092,64
D.	JUMLAH HARGA TENAGA	, BAHA	N DAN PE	RALATAN (A	+ B +	C)	Rp	906.608,95
E.	OVERHEAD & PROFIT		10	% x D			Rp	90.660,90
F.	HARGA SATUAN PEKERJA	Rp	997.269,85					

Tabel 11. HSP pekerjaan lapis drainase

NO.	KOMPONEN	KODE	SATUAN	PERKIRAAN KUANTITAS	HARGA SATUAN		JUMLAH HARGA				
A.	TENAGA										
1.	Pekerja	L01	jam	0,0117	Rp	15.000,00	Rp	175,50			
2.	Mandor	L03	jam	0,0058	Rp	25.000,00	Rp	145,00			
JUM	LAH HARGA TENAGA			•			Rp	320,50			
B.	BAHAN	3AHAN									
1	Lapis Drainase		m³	1,2714	Rp	277.662,49	Rp	353.028,02			
JUM	LAH HARGA BAHAN			•			Rp	353.028,02			
C.	PERALATAN										
1	Wheel Loader	E15	jam	0,0086	Rp	518.040,63	Rp	4.445,69			
2	Dump Truck	E09	jam	0,1339	Rp	527.898,00	Rp	70.700,78			
3	Motor Grader	E13	jam	0,0010	Rp	651.863,52	Rp	623,97			
4	Vibratory Roller	E19b	jam	0,0058	Rp	525.409,07	Rp	3.069,62			
5	Alat Bantu		Ls	1,0000	Rp	-	Rp	-			
JUM	LAH HARGA PERALATAN			•			Rp	78.840,06			
D.	JUMLAH HARGA TENAGA	, BAHA	N DAN PE	RALATAN (A	+ B +	C)	Rp	432.188,58			
E.	OVERHEAD & PROFIT		10	% x D			Rp	43.218,86			
F.	HARGA SATUAN PEKERJA	AAN (I) + E)				Rp	475.407,44			

Tabel 12. HSP pekerjaan stabilisasi semen

NO.	KOMPONEN	KODE	SATUAN	PERKIRAAN KUANTITAS	HAI	RGA SATUAN	JUM	LAH HARGA
A.	TENAGA							
1.	Pekerja	L01	jam	0,0297	Rp	15.000,00	Rp	445,50
2.	Mandor	L03	jam	0,0030	Rp	25.000,00	Rp	75,00
JUMI	LAH HARGA TENAGA						Rp	520,50
B.	BAHAN							
1	Semen	M12	Kg	56,2380	Rp	1.247,50	Rp	70.156,91
2	Curing Membrane	M259	m²	2,7111	Rp	200.000,00	Rp	542.217,67
JUM	LAH HARGA BAHAN						Rp	612.374,57
C.	PERALATAN							
1	Dump Truck	E09	Jam	0,1538	Rp	527.898,00	Rp	81.175,58
2	Motor Grader	E13	Jam	0,0006	Rp	651.863,52	Rp	415,98
3	Watertank Truck	E23	Jam	0,0462	Rp	310.558,12	Rp	14.343,05
4	Pneumatic Tire Roller	E18	Jam	0,0073	Rp	548.994,68	Rp	3.999,63
5	Pulvimixer	E27	Jam	0,0030	Rp	1.512.640,64	Rp	4.499,90
6	Alat Bantu		Ls	1,0000	Rp	-	Rp	-
JUM	LAH HARGA PERALATAN						Rp	104.434,14
D.	JUMLAH HARGA TENAGA, BAHAN DAN PERALATAN (A+B+C)						Rp	717.329,21
E.	OVERHEAD & PROFIT 10 % x D						Rp	71.732,92
F.	HARGA SATUAN PEKERJA	AAN (I) + E)				Rp	789.062,13

Tabel 13. HSP pekerjaan galian

NO.	KOMPONEN	KODE	SATUAN	PERKIRAAN KUANTITAS	HAR	GA SATUAN	JUML	AH HARGA		
A.	TENAGA									
1.	Pekerja	L01	jam	0,0077	Rp	15.000,00	Rp	115,16		
2.	Mandor	L03	jam	0,0038	Rp	25.000,00	Rp	95,96		
JUM	JUMLAH HARGA TENAGA									
B.	. BAHAN									
					Rp	-	Rp	-		
JUM	JUMLAH HARGA BAHAN									
C.	C. PERALATAN									
1	Excavator	E10	Jam	0,0038	Rp	693.466,09	Rp	2.661,89		
2	Dump Truck	E09	Jam	0,0333	Rp	527.898,00	Rp	17.603,60		
3	Alat Bantu		Ls	1,0000	Rp	-	Rp	-		
JUM	LAH HARGA PERALATAN	Rp	20.265,49							
D.	JUMLAH HARGA TENAGA, BAHAN DAN PERALATAN (A+B+C)							20.476,61		
E.	OVERHEAD & PROFIT 10 % x D							2.047,66		
F.	HARGA SATUAN PEKERJAAN (D+E)						Rp	22.524,27		

Tabel 14 HSP pekerjaan timbunan

				o orrorj.						
NO.	KOMPONEN	KODE	SATUAN	PERKIRAAN KUANTITAS	HAR	GA SATUAN	JUM	LAH HARGA		
A.	A. TENAGA									
1.	Pekerja	L01	jam	0,0079	Rp	15.000,00	Rp	119,05		
2.	Mandor	L03	jam	0,0020	Rp	25.000,00	Rp	49,60		
JUM	LAH HARGA TENAGA						Rp	168,65		
B.	B. BAHAN									
					Rp	-	Rp	-		
JUM	JUMLAH HARGA BAHAN									
C.	. PERALATAN									
1	Excavator	E15	Jam	0,0046	Rp	693.466,09	Rp	3.194,27		
2	Dump Truck	E09	Jam	0,1221	Rp	527.898,00	Rp	64.460,60		
3	Motor Grader	E13	Jam	0,0020	Rp	651.863,52	Rp	1.293,38		
4	Vibratory Roller	E19	Jam	0,0042	Rp	525.409,07	Rp	2.198,00		
5	Water tank truck	E23	Jam	0,0341	Rp	310.558,12	Rp	10.601,38		
6	Alat Bantu		Ls	1,0000	Rp	-	Rp	-		
JUMLAH HARGA PERALATAN								81.747,63		
D.	JUMLAH HARGA TENAGA	Rp	81.916,28							
E.	OVERHEAD & PROFIT 10 % x D							8.191,63		
F.	HARGA SATUAN PEKERJAAN (D+E)							90.107,91		

Bill of Quantity

Berdasarkan volume pekerjaan dan harga satuan pekerjaan yang telah dihitung sebelumnya didapatkan total Bill of Quantity (BOQ) pekerjaan jalan batas Kota Padang – Kota Painan KM 70+000 – KM 72+700 sebesar Rp. 43.447.698.000,00 (empat puluh tiga milyar empat ratus empat puluh tujuh enam ratus sembilan puluh delapan ribu rupiah) dengan perhitungan yang terdapat pada Tabel 15.

Tabel 15. BOQ pekerjaan jalan

Taber.	15.	$\mathbf{D}\mathbf{Q}$	pekerjaar	i jaiaii		
Item Pekerjaan	Satuan	Volume	HSP	BOQ		
Pelat Beton	m³	10798,460	Rp 1.421.387,55	Rp 15.348.796.829,54		
Lapis Fondasi LMC	m³	3788,933	Rp 997.269,85	Rp 3.778.589.040,71		
Lapis Drainase	m³	5683,400	Rp 475.407,44	Rp 2.701.930.676,43		
Stabilisasi Semen	Ton	24324,952	Rp 789.062,13	Rp 19.193.898.791,62		
Galian	m³	21550,438	Rp 22.524,27	Rp 485.407.850,91		
Timbunan	m³	21519,470	Rp 90.107,91	Rp 1.939.074.463,25		
Т	Rp 43.447.697.652,45					
Dibul	Rp 43.447.698.000,00					

PENUTUP

Berdasarkan dari hasil perhitungan dengan menggunakan data eksisting dari

Satker Perencanaan dan Pengawasan Jalan Nasional (P2JN) Sumatera Barat terdapat perbedaan panjang jalan baru dengan jalan lama, dimana jalan lama memiliki panjang 2,7 km sedangkan hasil perencanaan ulang ini didapatkan panjang jalan 2,706 km

Pada Perencanaan ulang ini pada perhitungan alinemen horizontal diperoleh tikungan berupa 6 tikungan FC dan 2 tikungan SCS. Sedangkan pada perencanaan alinemen vertikal diperoleh 2 lengkung vertical cekung dan 4 lengkung vertical cembung untuk desain fondasi jalan diperlukan perbaikan tanah dasar berupa stabilisasi semen dengan kedalaman 300 mm

Selanjutnya untuk desain struktur perkerasan didapatkan pelat beton dengan tebal 40 mm, lapis fondasi beton kurus (lean mix concrete) dengan tebal 60 mm dan lapis drainase dengan tebal 145 mm.

Pada perhitungan RAB didapatkan total BOQ sebesar Rp. 43.447.698.000,00 (empat puluh tiga milyar empat ratus empat puluh tujuh enam ratus sembilan puluh delapan ribu rupiah)

Penggunaan aplikasi *Autodesk Infraworks* untuk perencanaan geometrik jalan dinilai dapat mempermudah pelaksanaan dan penggambaran dalam pekerjaan serta menghemat waktu

Kekurangan pada *Autodesk Infraworks* yang ditemukan selama perencanaan ini yaitu pada standar yang digunakan oleh *Autodesk Infraworks*, karena hanya AASTHO 2011 yang dapat digunakan, sehingga parameter yang ditentukan dan hasil perhitungan yang dihitung secara otomatis pada *Autodesk Infraworks* mengacu pada AASTHO 2011, maka perlu adanya penyesuaian standar oleh pengguna aplikasi *Autodesk Infraworks* agar hasil perancanaan sesuai dengan standar yang digunakan di Indonesia.

DAFTAR PUSTAKA

Autodesk (2021) Elements of the User Interface. Tersedia pada: https://knowledge.autodesk.com/support/inf raworks/learn-explore/caas/CloudHelp/cloudhelp/ENU/Inf raWorks-UserHelp/files/GUID-390DEDE6-C26A-45F4-8B16-23CE3739F9ED-htm.html (Diakses: 1 Juli 2021).

92

- Bamher, B. G. (2020) Analisis Tebal Perkerasan Lentur Menggunakan Metode Manual Desain Perkerasan Jalan 2017 Pada Proyek Jalan Baru Batas Kota Singaraja-Mengwitani Buleleng. Universitas Atma Jaya Yogyakarta.
- Bina Marga (2017) "Manual Perkerasan Jalan (Revisi Juni 2017)," Jurnal Infrastruktur PUPR. Jakarta.
- Bina Marga (2018) "Spesifikasi Umum 2018 Untuk Pekerjaan Jalan dan Jembatan," Surat Edaran Dirjen Bina Marga Nomor 02/SE/Db/2018. Jakarta.
- Dimara, I. D. (2017) Perencanaan Geometrik Jalan Dengan Menggunakan AutoCAD Land Dekstop 2009 Pada Ruas Jalan Aminweri – Yendoker Sta 0+000 – Sta 10+500 KM Kabupaten Supiori – Papua. Institut Teknologi Nasional Malang.
- Fernanda, M. L. S. (2021) Perencanaan Geometrik Jalan Menggunakan AutoCAD Civil 3d Studi Kasus Jalan Duku – Sicincin Sta 0+000 – Sta 2+700 Provinsi Sumatera Barat. Universitas Andalas.
- Ibrahim, Bachtiar. 2001. Rencana dan Estimate Real of Cost. Jakarta: Bumi Aksara.
- Manual Desain Perkerasan Jalan (MDP) 2017 Kementerian Pekerjaan Umum Dan Perumahan Rakyat Direktorat Jenderal Bina Marga
- Menteri Pekerjaan Umum dan Perumahan Rakyat. 2016. Analisa Harga Satuan Pekerjaan Bidang Pekerjaan Umum No. 28/PRT/M/2016. Jakarta: Kementrian Pekerjaan Umum dan Perumahan Rakyat
- Pemerintah Indonesia. 2009. Undang-Undang Republik Indonesia Nomor 22 Tahun 2009 Tentang Tentang Lalu Lintas dan Angkutan Jalan, Jakarta, Sekretariat Negara.
- Pemerintah Kota Padang (2020) "Daftar Harga Satuan Pekerjaan Bidang ke PU-an dan HSBGN." Padang: Dinas Pekerjaan Umum dan Penataan Ruang Kota Padang.Bina Marga (1997) Tata Cara Perencanaan Geometrik Jalan Antar Kota. Jakarta.
- Pemerintah Republik Indonesia (2006) "Peraturan Pemerintah Republik Indonesia Nomor 34 Tahun 2006 tentang Jalan." Jakarta.
- PT. Adhi karya. (2020). Modul Autodesk Civil 3D Basic. Biro Engineering dan BIM.

Sukirman, S. (1999) Dasar-Dasar Perencanaan

- Geometrik Jalan. Bandung: Nova.
- Syaputra, Yogi. 2021. Aplikasi Building Information Modelling (BIM) Pada Perencanaan dan Pemodelan Jalan. Padang: Universitas Andalas.
- Utami, E. P. B. (2010) Perencanaan Geometrik Jalan Dan Rencana Anggaran Biaya Ruas Jalan Drono – Nganom Kecamatan Ngadirojo Kabupaten Wonogiri. Universitas Sebelas Maret.